math:pre-ap_calculus

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
math:pre-ap_calculus [2025/05/14 15:53] – [Chap.2 Function] root1math:pre-ap_calculus [2025/05/14 16:47] (current) – [Transformations of Functions] root1
Line 4: Line 4:
  
 ===== Chap.2 Function ===== ===== Chap.2 Function =====
 +
 +==== What is a Function? ====
  
 > Function Definition > Function Definition
Line 12: Line 14:
 {{url>https://www.desmos.com/calculator/pkb2vug0cf?embed 500,500 fullscreen | This is not a function}} {{url>https://www.desmos.com/calculator/pkb2vug0cf?embed 500,500 fullscreen | This is not a function}}
  
- +=== Evaluating a Function === 
 + 
 +\[ 
 +\frac{f(x + h) - f(x)}{h}, \quad h \neq 0 
 +\] 
 + 
 +### Step 1: Compute \( f(x + h) \) 
 +\[ 
 +f(x + h) = 2(x + h)^2 + 3(x + h) - 1 
 +\] 
 +\[ 
 += 2(x^2 + 2xh + h^2) + 3x + 3h - 1 
 +\] 
 +\[ 
 += 2x^2 + 4xh + 2h^2 + 3x + 3h - 1 
 +\] 
 + 
 +### Step 2: Compute \( f(x + h) - f(x) \) 
 +\[ 
 +f(x + h) - f(x) = \left(2x^2 + 4xh + 2h^2 + 3x + 3h - 1\right) - \left(2x^2 + 3x - 1\right) 
 +\] 
 +\[ 
 += 4xh + 2h^2 + 3h 
 +\] 
 + 
 +### Step 3: Form the Difference Quotient 
 +\[ 
 +\frac{f(x + h) - f(x)}{h} = \frac{4xh + 2h^2 + 3h}{h} 
 +\] 
 +\[ 
 += \frac{h(4x + 2h + 3)}{h} 
 +\] 
 +\[ 
 += 4x + 2h + 3 \quad \text{(for \( h \neq 0 \))} 
 +\] 
 + 
 +=== The Domain of a Function === 
 + 
 +> Recall that the //domain// of a function is the set of all inputs for the function. 
 + 
 +If the function is given by an algebraic expression and the domain is not stated explicitly, then by 
 +//convention the domain of the function is the domain of the algebraic expression—that 
 +is, the set of all real numbers for which the expression is defined as a real number.// 
 + 
 +=== Four Ways to Represent a Function === 
 + 
 +  - verbally (by a description in words) 
 +  - algebraically (by an explicit formula) 
 +  - visually (by a graph) 
 +  - numerically (by a table of values) 
 + 
 +==== Graphs of Functions ==== 
 + 
 +The most important way to visualize a function is through its graph. In this section 
 +we investigate in more detail the concept of graphing functions. 
 + 
 +=== Graphing Functions === 
 + 
 +=== Graphing Piecewise Defined Functions === 
 + 
 +\[ 
 +f(x) =  
 +\begin{cases}  
 +x^2 & \text{if } x \leq 1, \\ 
 +2x + 1 & \text{if } x > 1. 
 +\end{cases} 
 +\] 
 + 
 +==== Increasing and Decreasing Functions; Average Rate of Change ==== 
 + 
 +Functions are often used to model changing quantities. In this section we learn how 
 +to determine if a function is increasing or decreasing, and how to find the rate at 
 +which its values change as the variable changes. 
 + 
 +=== Increasing and Decreasing Functions === 
 + 
 +**Increasing Function:**   
 +A function \( f \) is increasing on an interval \( I \) if   
 +\[ \forall x_1, x_2 \in I, \quad x_1 < x_2 \implies f(x_1) \leq f(x_2). \] 
 + 
 +**Strictly Increasing Function:**   
 +A function \( f \) is strictly increasing on an interval \( I \) if   
 +\[ \forall x_1, x_2 \in I, \quad x_1 < x_2 \implies f(x_1) < f(x_2). \] 
 + 
 +**Decreasing Function:**   
 +A function \( f \) is decreasing on an interval \( I \) if   
 +\[ \forall x_1, x_2 \in I, \quad x_1 < x_2 \implies f(x_1) \geq f(x_2). \] 
 + 
 +**Strictly Decreasing Function:**   
 +A function \( f \) is strictly decreasing on an interval \( I \) if   
 +\[ \forall x_1, x_2 \in I, \quad x_1 < x_2 \implies f(x_1) > f(x_2). \] 
 + 
 +=== Average Rate of Change === 
 + 
 +Definition: For a function \( f(x) \), the average rate of change over the interval \([a, b]\) is given by: 
 + 
 +\[ 
 +\text{Average Rate of Change} = \frac{f(b) - f(a)}{b - a} 
 +\] 
 + 
 +This formula calculates the change in the function's value (\( \Delta y \)) divided by the change in the input (\( \Delta x \)). 
 + 
 +==== Transformations of Functions ==== 
 + 
 +In this section we study how certain transformations of a function affect its graph. 
 +This will give us a better understanding of how to graph functions. The transformations 
 +we study are shifting, reflecting, and stretching. 
 + 
 +=== Vertical Shifting === 
 + 
 +Adding a constant to a function shifts its graph vertically: upward if the constant is 
 +positive and downward if it is negative. 
 + 
 +Use the graph \( f(x) = x^2 \) of to sketch the graph of each function. 
 +\[ 
 +a.\quad  g(x) = x^2 + 3 \\ 
 +b.\quad  h(x) = x^2 - 2 
 +\] 
 + 
 +{{url>https://www.desmos.com/calculator/uoacsjlmc5?embed 500,500}} 
 + 
 +=== Horizontal Shifting === 
 + 
 +**Shift Right by \( h \) Units** 
 + 
 +\[ 
 +y = f(x - h) 
 +\] 
 + 
 +**Example:** \( f(x) = x^2 \) shifted right by 2:   
 +   
 +\[ 
 +y = (x - 2)^2 
 +\] 
 + 
 +**Shift Left by \( h \) Units** 
 + 
 +\[ 
 +y = f(x + h) 
 +\] 
 + 
 +**Example:** \( f(x) = \sqrt{x} \) shifted left by 3:   
 + 
 +\[ 
 +y = \sqrt{x + 3} 
 +\] 
 + 
 +**Key Rule** 
 + 
 +**\( -h \) inside \( f(x - h) \) → shifts right**   
 + 
 +**\( +h \) inside \( f(x + h) \) → shifts left** 
 + 
 + 
 +=== Reflecting Graphs === 
 + 
 +To graph \( y = -f(x) \), reflect the graph of \( y = f(x) \) in the x-axis. 
 +To graph \( y = f(-x) \), reflect the graph of \( y = f(x) \) in the y-axis. 
 + 
 +=== Vertical Stretching and Shrinking === 
 + 
 +To graph \( y = cf(x) \), 
 + 
 +If \( c > 1 \), stretch the graph of \( y = f(x) \) vertically by a factor of c. 
 + 
 +If \( 0 < c < 1 \), shrink the graph of \( y = f(x) \) vertically by a factor of c. 
 + 
 +=== Horizontal Stretching and Shrinking === 
 + 
 +To graph \( y = f(cx) \), 
 + 
 +If \( c > 1 \), stretch the graph of \( y = f(x) \) vertically by a factor of 1/c. 
 + 
 +If \( 0 < c < 1 \), shrink the graph of \( y = f(x) \) vertically by a factor of 1/c. 
 + 
 +=== Even and Odd Functions === 
 + 
 +If a function \( f \) satisfies \( f(x) = f(-x) \) for every number \( x \) in its domain, then \( f \) is called an even function. 
 + 
 +If \( f \) satisfies \( f(x) = -f(-x) \) for every number \( x \) in its domain, then \( f \) is called an odd function.  
 + 
 +==== Quadratic Functions; Maxima and Minima ====
  
  • math/pre-ap_calculus.1747237983.txt.gz
  • Last modified: 2025/05/14 15:53
  • by root1